Better Health: Smart Health Commentary Better Health (TM): smart health commentary

Article Comments

Spider Silk, Weaponized


Materials based on spider silk have a very promising future in medicine (see flashbacks below). German scientists from the Max Planck Institute of Microstructure Physics were able to reinforce this natural material, which is already strong and flexible, with metal ions and develop super strong fibers:

The fact that spider silk treated with metal ions does not break under enormous tension is just one of the advantages it has to offer: “It can be expanded twice as much as natural spider silk,” says Mato Knez, who is heading the research at the Max Planck Institute. As the treated material withstands high levels of tension and strain, it absorbs ten times more energy than the natural material before it breaks. Thus, it is particularly suitable for braking at full speed or braking free fall, for example in the case of a mountain climber.

Materials with such properties could also be used in aircraft and vehicle construction or in space technology, generally for any application that requires light, strong, and flexible materials. “Our work promises great potential in terms of practical applications, as many other biomaterials can be made more break-resistant and ductile using our method,” explains Mato Knez. There is one important precondition, however: the natural materials must contain proteins as their main component. For example, Knez and his colleagues have already used the metal infiltration process to strengthen fibres made of the protein collagen which composes bones and skins in human body.

As the researchers discovered, the strengthening treatment for spider silk and other protein fibres only works when the metal ions can penetrate into the fibres. To achieve this, they adapted the atomic layer deposition (ALD) technique. This method is usually used to deposit individual layers of metal oxides on the surface of materials by exposing them to water vapour and a volatile compound comprising metal and organic appendages in rapid succession. Up to a few hundred of such gas pulses stream into the material and coat it with a more or less thick layer of oxide. “Because each pulse only lasts fractions of a second, the metal does not penetrate the material, however,” explains Mato Knez: “Therefore, we adapted the equipment so that we could extend an individual pulse to a duration of up to 40 seconds.”

In order to make it clear that the process involved here no longer involves a coating process as is the case in standard ALD, the researchers refer to the modified technique as “Multiple Pulsed Vapour Phase Infiltration” or MPI. By doing this, they wish to avoid any possible confusion in the future. “Actually, it was rather difficult for us to make it clear to colleagues that we are infiltrating materials using a process that previously was only used for coating.”

The researchers were able to detect under the transmission electron microscope that metal atoms from the vapour phase could also creep into the interior of the spider silk. For these tests, a scientist from the Martin Luther University Halle-Wittenberg cut 90-nanometer-thin slices of the spider silk. The microscopic images did not explain, however, why the metal atoms increase the strength of the protein fibres. “Up to now, we only have a few pointers about this,” says Mato Knez: for example, from NMR measurements, which the researchers at the University of Halle made of spider silks infiltrated with aluminium.

“This would indicate that the aluminium is present in a compound other than a typical aluminium oxide,” says Knez. And he has a good idea which compound it is: “We assume that the metal atoms bind the protein molecules to each other.” Hydrogen atoms usually form bridges between the molecules which, however, break far more easily than the strong compounds made using metal atoms. Thus, it becomes plausible for metal-infiltrated spider silk to withstand more weight than the natural version. The better ductility can also be explained in this way. A thread of spider silk can be extended in length because its protein fibres run together like tangled wool in areas referred to as amorphous. In other locations, they arrange themselves in an orderly line like a neat ball of wool. “In these crystalline areas, the hydrogen bridges are probably also replaced by metal ions,” says Mato Knez. Consequently, their order dissolves, the amorphous areas increase and with them the ductility.

Spider silk sutures on a straight needle, anyone?

Full story: Power thrust for spider silk…

Flashbacks: Spider Silk: Ancient Ideas, Great Future?; New Nanomaterial from Spider Silk and Silica; Super Stretchy Nanocomposite Developed ;

*This blog post was originally published at Medgadget*


You may also like these posts

Read comments »


Comments are closed.

Return to article »

Latest Interviews

IDEA Labs: Medical Students Take The Lead In Healthcare Innovation

It’s no secret that doctors are disappointed with the way that the U.S. healthcare system is evolving. Most feel helpless about improving their work conditions or solving technical problems in patient care. Fortunately one young medical student was undeterred by the mountain of disappointment carried by his senior clinician mentors…

Read more »

How To Be A Successful Patient: Young Doctors Offer Some Advice

I am proud to be a part of the American Resident Project an initiative that promotes the writing of medical students residents and new physicians as they explore ideas for transforming American health care delivery. I recently had the opportunity to interview three of the writing fellows about how to…

Read more »

See all interviews »

Latest Cartoon

See all cartoons »

Latest Book Reviews

Book Review: Is Empathy Learned By Faking It Till It’s Real?

I m often asked to do book reviews on my blog and I rarely agree to them. This is because it takes me a long time to read a book and then if I don t enjoy it I figure the author would rather me remain silent than publish my…

Read more »

The Spirit Of The Place: Samuel Shem’s New Book May Depress You

When I was in medical school I read Samuel Shem s House Of God as a right of passage. At the time I found it to be a cynical yet eerily accurate portrayal of the underbelly of academic medicine. I gained comfort from its gallows humor and it made me…

Read more »

Eat To Save Your Life: Another Half-True Diet Book

I am hesitant to review diet books because they are so often a tangled mess of fact and fiction. Teasing out their truth from falsehood is about as exhausting as delousing a long-haired elementary school student. However after being approached by the authors’ PR agency with the promise of a…

Read more »

See all book reviews »