Book Review For Neurosurgeons: Intraoperative MRI-Guided Neurosurgery
Hall WA, Nimsky C, Truwit CL. Intraoperative MRI-Guided Neurosurgery. Thieme 2010, 272 pages, $159.95.
This book is a multiauthored text edited by three senior authors who have a tremendous experience in the use of intraoperative MRI technology. The book is divided into five sections that describe the various iterations of iMRIs that are available, its application for minor procedures, the resection of neoplastic lesions, and its role in the management of nonneoplastic disorders. The last section focuses on the future improvements in design that are likely to improve surgical access and utility of this burgeoning technology.
The first section describes the characteristics of iMRI machines that are available in the low, medium and high field strength. The reader gets a very good idea about the relative benefits and limitations of each of these machines. Hospitals that may be in the process of deciding which technology to go in for may use this information as a good guide. This section also highlights the optimal pulse sequences that may help differentiate tumor-brain interface, perform intraoperative fMRI and DTI tracking and detect complications related to brain ischemia and hematoma formation. The chapters in this section are well illustrated and show both the technology and the images obtained with various units. The chapter on optimal pulse sequences is very well written and discusses the specific pulse sequences that can help obtain the maximum intraoperative information with the least amount of time. These sequences can be tailored to provide not only anatomical details but also to help obtain both DTI and functional activation data for intraoperative neuronavigation, thereby accounting for brain shifts and movement of eloquent tracts during surgery. The authors describe the challenges of this methodology. Specific anesthetic challenges that restrict the use of standard monitoring equipment have been outlined. These include patient access, length of operative procedure, influence of magnetic field and RF currents on the functioning of the equipments and the images obtained, and risk of migration of ferromagnetic instruments, among others. This has led to the development of MR compatible anesthesia and monitoring equipment. Safety issues and steps needed to ensure reliability of equipment have been described. Read more »
*This blog post was originally published at AJNR Blog*